Cholesterol Articles and Abstracts

For medical practitioners and the general public - Cholesterol Journal Article Catalog.

Cholesterol Journal Articles



Record 8381 to 8400
First Page Previous Page Next Page Last Page
Liver transplantation modifies serum cholestanol, cholesterol precursor and plant sterol levels
Nikkila, K., K. Hockerstedt, et al. (1992), Clin Chim Acta 208(3): 205-18.
Abstract: Proportions of cholesterol precursors (squalene, delta 8-cholestenol, desmosterol and lathosterol), plant sterols (campesterol and sitosterol) and cholestanol to cholesterol in serum were measured before and serially after liver transplantation in eight patients with primary biliary cirrhosis (PBC) and three with acute liver necrosis. The preoperative proportions of cholestanol were 12 and 3-times higher in the PBC and necrosis groups, respectively, than in a control group of 27 individuals, while those of lathosterol were low in both groups and the campesterol/sitosterol ratio in the PBC group. During the operation the proportions of cholestanol fell sharply and those of lathosterol rose especially in the PBC group. During the postoperative follow-up of 5 weeks the proportions of the non-cholesterol sterols were markedly improved especially in the necrosis group yet those of cholestanol remained high and the campesterol/sitosterol ratios low, particularly in the PBC group. The proportions of lathosterol increased gradually almost to the control limits within the postoperative 5-week period, whereas those of desmosterol decreased. The non-cholesterol sterol values were not related to acute rejections, while significant correlations of cholestanol to liver function tests was found especially at the end of the follow-up.

Liver X receptor and retinoic X receptor mediated ABCA1 regulation and cholesterol efflux in macrophage cells-messenger RNA measured by branched DNA technology
Zhang, Y., T. P. Beyer, et al. (2002), Mol Genet Metab 77(1-2): 150-8.
Abstract: ABCA1 is an ATP binding cassette transporter that plays an essential role in cholesterol and phospholipid efflux and HDL biogenesis. ABCA1 expression in macrophage cells is subject to regulation by cAMP, cholesterol loading, and ligands of the nuclear receptors liver X receptor (LXR) and retinoid X receptor (RXR). We report here the development of a rapid and high volume branched DNA (bDNA) method to measure ABCA1 mRNA. By using the bDNA method, we show that both LXR and RXR ligands effectively regulate ABCA1 expression in three macrophage cell types: mouse RAW264.7 cell line, mouse peritoneal macrophage cells, and human macrophage THP-1 cells and their regulation is additive. Furthermore, by using a radiolabeled cholesterol efflux assay, we show that both LXR and RXR ligands are sufficient to mediate cholesterol efflux in macrophage cells and their efficacy correlates with ABCA1 regulation. These studies strengthen further the notion that LXR and RXR mediate ABCA1 expression and cholesterol efflux in macrophage cells as a permissive heterodimer and development of small molecule ligands of these nuclear receptors may represent a promising approach to modulating cholesterol efflux and plasma HDL cholesterol level in humans.

Liver X receptor-alpha mediates cholesterol efflux in glomerular mesangial cells
Wu, J., Y. Zhang, et al. (2004), Am J Physiol Renal Physiol 287(5): F886-95.
Abstract: Lipid-mediated injury plays an important role in the pathogenesis of many renal diseases including diabetic nephropathy. Liver X receptor-alpha (LXRalpha) is an intracellular sterol sensor that regulates expression of genes controlling cholesterol absorption, excretion, catabolism, and cellular efflux. The present study was aimed at examining the role of LXRalpha in cholesterol metabolism in glomerular mesangial cells. A 1,561-bp fragment of full-length rabbit LXR cDNA was cloned. The deduced protein sequence exhibited 92.4 and 89.2% identity to human and mouse LXRalpha, respectively. Tissue distribution studies showed that rabbit LXRalpha was expressed in the liver, spleen, and kidney. In situ hybridization and RT-PCR assays further indicated that LXRalpha mRNA was widely expressed in the kidney and present in every nephron segment including the glomeruli. To determine intrarenal regulation of LXRalpha, rabbits were treated with thiazolidinedione (TZD) peroxisome proliferator-activated receptor-gamma (PPARgamma) agonists, which have been previously shown to enhance LXRalpha expression via PPARgamma and increase cholesterol efflux in macrophages. The results showed that glomerular LXRalpha expression was markedly induced by TZDs. In cultured rabbit mesangial cells, LXRalpha mRNA and protein were detected by RT-PCR and immunoblotting. Treatment of mesangial cells with a specific LXRalpha agonist, TO-901317, significantly increased basal and apolipoprotein AI-mediated cholesterol efflux and markedly enhanced the promoter activity of an LXRalpha target gene, ATP-binding cassette transporter A1 (ABCA1). In conclusion, LXRalpha is expressed in renal glomeruli and functionally present in mesangial cells where its activation mediates cholesterol efflux via ABCA1. These data suggest that LXRalpha may be a potential therapeutic target for treating lipid-related renal glomerular disease.

Liver X receptors and the control of cholesterol homeostasis: potential therapeutic targets for the treatment of atherosclerosis
Millatt, L. J., V. Bocher, et al. (2003), Biochim Biophys Acta 1631(2): 107-18.
Abstract: The liver X receptors (LXRalpha and LXRbeta) are nuclear receptor transcription factors that are activated by certain oxysterol derivatives of cholesterol. As such, LXR activity may be up-regulated by cellular lipid loading or dietary cholesterol intake. Intensive research interest in the LXRs has led to the identification of an expanding list of LXR target genes. The identity of these genes, and their response to LXR activation, indicates that the LXRs play an important role in the response to excess cholesterol, and that their activation may protect against tissue cholesterol overload. In this review, we highlight the multiple roles of the LXRs in controlling cholesterol homeostasis via their coordinated effects on cholesterol synthesis, dietary cholesterol absorption, reverse cholesterol transport, and bile acid synthesis and excretion. We discuss the therapeutic interest of developing LXR agonists, in view of their apparent protective effects against atherosclerosis. However, we also draw attention to the possible undesirable side-effects of LXR activation, and thus the potential interest of developing target gene-specific LXR agonists, or agonists that are specific for only one LXR isoform.

Liver X receptors as insulin-mediating factors in fatty acid and cholesterol biosynthesis
Tobin, K. A., S. M. Ulven, et al. (2002), J Biol Chem 277(12): 10691-7.
Abstract: The nuclear receptor liver X receptor (LXR) alpha, an important regulator of cholesterol and bile acid metabolism, was analyzed after insulin stimulation in liver in vitro and in vivo. A time- and dose-dependent increase in LXRalpha steady-state mRNA level was seen after insulin stimulation of primary rat hepatocytes in culture. A maximal induction of 10-fold was obtained when hepatocytes were exposed to 400 nm insulin for 24 h. Cycloheximide, a potent inhibitor of protein synthesis, prevented induction of LXRalpha mRNA expression by insulin, indicating that the induction is dependent on de novo synthesis of proteins. Stabilization studies using actinomycin D indicated that insulin stimulation increased the half-life of LXRalpha transcripts in cultured primary hepatocytes. Complementary studies where rats and mice were injected with insulin induced LXRalpha mRNA levels and confirmed our in vitro studies. Furthermore, deletion of both the LXRalpha and LXRbeta genes (double knockout) in mice markedly suppressed insulin-mediated induction of an entire class of enzymes involved in both fatty acid and cholesterol metabolism. The discovery of insulin regulation of LXR in hepatic tissue as well as gene targeting studies in mice provide strong evidence that LXRs plays a central role not only in cholesterol homeostasis, but also in fatty acid metabolism. Furthermore, LXRs appear to be important insulin-mediating factors in regulation of lipogenesis.

Liver, lipoproteins and disease: II. Clinical relevance of disordered cholesterol metabolism in liver disease
Powell, E. E. and P. A. Kroon (1992), J Gastroenterol Hepatol 7(2): 225-31.
Abstract: The alterations in the concentration and composition of lipoproteins that occur in liver disease indicate the central role of the liver in lipoprotein metabolism. A number of studies have characterized plasma lipoproteins in patients with liver disease, although in most cases the underlying molecular defects responsible for the changes are still undetermined.

Liver-specific deletion of the NADPH-cytochrome P450 reductase gene: impact on plasma cholesterol homeostasis and the function and regulation of microsomal cytochrome P450 and heme oxygenase
Gu, J., Y. Weng, et al. (2003), J Biol Chem 278(28): 25895-901.
Abstract: A mouse model with liver-specific deletion of the NADPH-cytochrome P450 reductase (Cpr) gene (designated Alb-Cre/Cprlox mice) was generated and characterized in this study. Hepatic microsomal CPR expression was significantly reduced at 3 weeks and was barely detectable at 2 months of age in the Alb-Cre+/-/Cprlox+/+ (homozygous) mice, with corresponding decreases in liver microsomal cytochrome P450 (CYP) and heme oxygenase (HO) activities, in pentobarbital clearance, and in total plasma cholesterol level. Nevertheless, the homozygous mice are fertile and are normal in gross appearance and growth rate. However, at 2 months, although not at 3 weeks, the homozygotes had significant increases in liver weight, accompanied by hepatic lipidosis and other pathologic changes. Intriguingly, total microsomal CYP content was increased in the homozygotes about 2-fold at 3 weeks and about 3-fold at 2 months of age; at 2 months, there were varying degrees of induction in protein (1-5-fold) and mRNA expression (0-67-fold) for all CYPs examined. There was also an induction of HO-1 protein (nearly 9-fold) but no induction of HO-2. These data indicate the absence of significant alternative redox partners for liver microsomal CYP and HO, provide in vivo evidence for the significance of hepatic CPR-dependent enzymes in cholesterol homeostasis and systemic drug clearance, and reveal novel regulatory pathways of CYP expression associated with altered cellular homeostasis. The Alb-Cre/Cprlox mouse represents a unique model for studying the in vivo function of hepatic HO and microsomal CYP-dependent pathways in the biotransformation of endogenous and xenobiotic compounds.

Liver-X-receptor-mediated increase in ATP-binding cassette transporter A1 expression is attenuated by fatty acids in CaCo-2 cells: effect on cholesterol efflux to high-density lipoprotein
Murthy, S., E. Born, et al. (2004), Biochem J 377(Pt 3): 545-52.
Abstract: The effect of fatty acids on LXR (liver X receptors)-mediated enhancement of ABCA1 (ATP-binding cassette transporter A1) expression and cholesterol efflux was investigated in human intestinal cells CaCo-2. LXR activation by T0901317 increased basolateral cholesterol efflux to lipoprotein particles isolated at a density of 1.21 g/ml or higher. Oleic and arachidonic acids attenuated the amount of cholesterol isolated from these particles. Stearic, linoleic and docosahexaenoic acids also decreased cholesterol efflux from basolateral membranes, with the polyunsaturated fatty acids being the most potent. Although oleic, arachidonic and docosahexaenoic acids modestly decreased ABCA1 mRNA levels in response to LXR activation, stearic and linoleic acids did not. Except for oleic acid, all fatty acids substantially attenuated an increase in ABCA1 mass secondary to LXR activation. Inhibiting acyl-CoA:cholesterol acyltransferase activity prevented the decrease in cholesterol efflux caused by oleic acid. Thus, in response to LXR activation, all fatty acids decreased the efflux of cholesterol from the basolateral membrane of CaCo-2 cells. Although modest suppression of ABCA1 gene expression by oleic, arachidonic and docosahexaenoic acids cannot be completely excluded as a mechanism, the predominant effect of fatty acids on ABCA1 expression and cholesterol efflux is at a post-transcriptional level.

Local effects of cholesterol carrier system on binding of lactogens and epidermal growth factor to the developing mammary gland
Vonderhaar, B. K. (1993), Endocrinology 133(1): 427-9.
Abstract: Cholesterol pellets inserted directly into mammary glands of 4- and 10-week-old mice resulted in lactogens, such as human growth hormone and prolactin, and epidermal growth factor. The effects of cholesterol the binding of lactogens and epidermal growth factor to the livers of these same animals was unaffected. Pellets the interscapular region had no effect on binding of either ligand to mammary glands or livers.

Localization and interactions of melatonin in dry cholesterol/lecithin mixed reversed micelles used as cell membrane models
Bongiorno, D., L. Ceraulo, et al. (2005), J Pineal Res 38(4): 292-8.
Abstract: The state of melatonin confined in dry cholesterol/lecithin mixed reversed micelles dispersed in CCl4 was investigated using 1H-NMR and FT-IR spectroscopies as a function of the melatonin to lecithin molar ratio (R(MLT)) and of the cholesterol to lecithin molar ratio (R(CHL)). An analysis of experimental results leads to the hypothesis that, independent of R(MLT) and as a consequence of anisotropic melatonin/lecithin, melatonin/cholesterol and cholesterol/lecithin interactions, melatonin is totally solubilized in reversed micelles. Melatonin is mainly located in and oriented in the nanodomain constituted by the hydrophilic groups of cholesterol and lecithin. A competition of melatonin and cholesterol for the hydrophilic binding sites of the reversed micelles was observed by changing the R(CHL). Some possible biological implications of the specific interactions governing the solubilization process, the preferential location and the peculiar properties of melatonin confined in cholesterol/lecithin mixed reversed micelles are discussed.

Localization of an apolipoprotein A-I epitope critical for lipoprotein-mediated cholesterol efflux from monocytic cells
Banka, C. L., A. S. Black, et al. (1994), J Biol Chem 269(14): 10288-97.
Abstract: The inverse correlation between plasma high density lipoprotein (HDL) levels and the risk for cardiovascular disease has been attributed in part to the role of HDL in facilitating the transport of cholesterol to the liver for catabolism. One component of this reverse cholesterol transport is removal of excess cholesterol from peripheral cells. An immunochemical approach was employed to evaluate the role of human apolipoprotein (apo) A-I in cellular cholesterol efflux and to test the hypothesis that discrete structural domains of the molecule mediate this function. Two apoA-I-specific monoclonal antibodies (AI-11 and AI-14) inhibited in vitro cellular cholesterol efflux from THP-1 monocytic cells to HDL or apoA-I proteoliposomes by approximately 50%. Six other antibodies had no effect although three of these bound significant proportions of the apoA-I proteoliposomes. Antibody AI-11 binds apoA-I amino acid residues 96-111 (Banka, C. L., Bonnet, D. J., Black, A. S., Smith, R. S., and Curtiss, L. K. (1991) J. Biol. Chem. 266, 23886-23892). The AI-14 epitope was localized to residues 74-105. Therefore, the two antibodies that inhibited HDL promotion of cellular cholesterol efflux bound overlapping but distinct regions of the apoA-I molecule.

Localization of cholesterol in sphingomyelinase-treated fibroblasts
Porn, M. I. and J. P. Slotte (1995), Biochem J 308 (Pt 1): 269-74.
Abstract: The distribution of cellular unesterified cholesterol was studied in fibroblasts, which had been depleted of plasma membrane sphingomyelin by exposure to exogenous sphingomyelinase. This treatment has previously been shown to induce an increase in cholesterol esterification, a decrease in the biosynthesis of cholesterol, and a decreased susceptibility of cell cholesterol to oxidation with cholesterol oxidase. When the cellular localization of cholesterol was studied with fluorescent filipin staining, sphingomyelin depletion did not cause any visible changes in the filipin-cholesterol staining pattern, suggesting that the major part of cellular cholesterol was retained in the plasma membrane after sphingomyelinase treatment. After the oxidation of cell-surface cholesterol with cholesterol oxidase, the plasma membrane was no longer stained by filipin, but the plasma membrane cholesterol of sphingomyelin-depleted cells appeared to be resistant to oxidation with cholesterol oxidase when sphingomyelinase was used as an oxidation-promoting agent. However, the use of hypotonic buffer or phosphatidylcholine-specific phospholipase C together with cholesterol oxidase resulted in a complete oxidation of the cell-surface cholesterol in sphingomyelin-depleted cells, as evidenced by the filipin-cholesterol staining pattern. Similar results were obtained when 3Hcholesterol-labelled fibroblasts were used for determination of the susceptibility to cholesterol oxidation. The kinetics of 3Hcholesterol oxidation in sphingomyelin-depleted cells with cholesterol oxidase in hypotonic buffer indicated that approximately 85% of the cellular cholesterol still resided in the plasma membrane after sphingomyelin depletion. These results are contradictory to earlier reports on sphingomyelinase-induced changes in cellular cholesterol distribution and suggest that minor changes in the kinetics of cholesterol transport from the plasma membrane to the endoplasmic reticulum may be responsible for the sphingomyelinase-induced changes in the rates of cholesterol metabolism. Whereas the use of phospholipases to promote the oxidation of cholesterol in some instances might lead to misinterpretations, the use of hypotonic buffer together with cholesterol oxidase proved to be a more reliable method for the determination of cellular cholesterol distribution.

Localization of human acyl-coenzyme A: cholesterol acyltransferase-1 (ACAT-1) in macrophages and in various tissues
Sakashita, N., A. Miyazaki, et al. (2000), Am J Pathol 156(1): 227-36.
Abstract: To investigate the distribution of acyl-coenzyme A:cholesterol acyltransferase-1 (ACAT-1) in various human tissues, we examined tissues of autopsy cases immunohistochemically. ACAT-1 was demonstrated in macrophages, antigen-presenting cells, steroid hormone-producing cells, neurons, cardiomyocytes, smooth muscle cells, mesothelial cells, epithelial cells of the urinary tracts, thyroid follicles, renal tubules, pituitary, prostatic, and bronchial glands, alveolar and intestinal epithelial cells, pancreatic acinar cells, and hepatocytes. These findings showed that ACAT-1 is present in a variety of human tissues examined. The immunoreactivities are particularly prominent in the macrophages, steroid hormone-producing cells, followed by hepatocytes, and intestinal epithelia. In cultured human macrophages, immunoelectron microscopy revealed that ACAT-1 was located mainly in the tubular rough endoplasmic reticulum; immunoblot analysis showed that the ACAT-1 protein content did not change with or without cholesterol loading; however, on cholesterol loading, about 30 to 40% of the total immunoreactivity appeared in small-sized vesicles. These vesicles were also enriched in 78-kd glucose-regulated protein (GRP 78), a specific marker for the endoplasmic reticulum. Immunofluorescent microscopy demonstrated extensive colocalization of ACAT-1 and GRP 78 signals in both the tubular and vesicular endoplasmic reticulum before and after cholesterol loading. These results raise the possibility that foam cell formation may activate an endoplasmic reticulum vesiculation process, producing vesicles enriched in the ACAT-1 protein.

Localization of nitration and chlorination sites on apolipoprotein A-I catalyzed by myeloperoxidase in human atheroma and associated oxidative impairment in ABCA1-dependent cholesterol efflux from macrophages
Zheng, L., M. Settle, et al. (2005), J Biol Chem 280(1): 38-47.
Abstract: We recently reported that apolipoprotein A-I (apoA-I), the major protein component of high density lipoprotein, is a selective target for myeloperoxidase (MPO)-catalyzed nitration and chlorination in both and serum of subjects with cardiovascular disease. We further showed that the extent of both apoA-I nitration and chlorination correlated with functional impairment in reverse cholesterol transport activity of the isolated lipoprotein. Herein we used tandem mass spectrometry to map the sites of MPO-mediated apoA-I nitration and chlorination in vitro and in vivo and to relate the degree of site-specific modifications to loss of apoA-I lipid binding and cholesterol efflux functions. Of the seven tyrosine residues in apoA-I, Tyr-192, Tyr-166, Tyr-236, and Tyr-29 were nitrated and chlorinated in MPO-mediated reactions. Site-specific liquid chromatography-mass spectrometry quantitative analyses demonstrated that the favored modification site following exposure to MPO-generated oxidants is Tyr-192. MPO-dependent nitration and chlorination both proceed with Tyr-166 as a secondary site and with Tyr-236 and Tyr-29 modified only minimally. Parallel functional studies demonstrated dose-dependent losses of ABCA1-dependent cholesterol acceptor and lipid binding activities with apoA-I modification by MPO. Finally tandem mass spectrometry analyses showed that apoA-I in human atherosclerotic tissue is nitrated at the MPO-preferred sites, Tyr-192 and Tyr-166. The present studies suggest that site-specific modifications of apoA-I by MPO are associated with impaired lipid binding and ABCA1-dependent cholesterol acceptor functions, providing a molecular mechanism that likely contributes to the clinical link between MPO levels and cardiovascular disease risk.

Localization of the PE methylation pathway and SR-BI to the canalicular membrane: evidence for apical PC biosynthesis that may promote biliary excretion of phospholipid and cholesterol
Sehayek, E., R. Wang, et al. (2003), J Lipid Res 44(9): 1605-13.
Abstract: To better understand the regulation of biliary phospholipid and cholesterol excretion, canalicular membranes were isolated from the livers of C57BL/6J mice and abundant proteins separated by SDS-PAGE and identified by matrix-assisted laser desorption/ionization mass spectrometry. A prominent protein revealed by this analysis was betaine homocysteine methyltransferase (BHMT). This enzyme catalyzes the first step in a three-enzyme pathway that promotes the methylation of phosphatidylethanolamine (PE) to phosphatidylcholine (PC). Immunoblotting confirmed the presence of BHMT on the canalicular membrane, failed to reveal the presence of the second enzyme in this pathway, methionine adenosyltransferase, and localized the third enzyme of the pathway, PE N-methyltransferase (PEMT). Furthermore, immunfluorescence microscopy unambiguously confirmed the localization of PEMT to the canalicular membrane. These findings indicate that a local mechanism exists in or around hepatocyte canalicular membranes to promote phosphatidylethnolamine methylation and PC biosynthesis. Finally, immunoblotting revealed the presence and immunofluorescence microscopy unambiguously localized the scavenger receptor class B type I (SR-BI) to the canalicular membrane. Therefore, SR-BI, which is known to play a role in cholesterol uptake at the hepatocyte basolateral membrane, may also be involved in biliary cholesterol excretion. Based on these findings, a model is proposed in which local canalicular membrane PC biosynthesis in concert with the phospholipid transporter mdr2 and SR-BI, promotes the excretion of phospholipid and cholesterol into the bile.

Location of cholesterol in model membranes by magic-angle-sample-spinning NMR
Villalain, J. (1996), Eur J Biochem 241(2): 586-93.
Abstract: High-resolution magic-angle-sample-spinning 13C-NMR was applied to determine the specific location of cholesterol in non-perturbed multilamellar model membranes formed by egg yolk phosphatidylcholine. 13C spin-lattice relaxation times of both the phospholipid and cholesterol molecules were measured in the absence and in the presence of Gd3+, a paramagnetic agent, in order to obtain information on molecular distances. The effect of Gd3+ on the spin-lattice relaxation times of the lipid resonances has an explicit distance dependence, allowing it to be used to evaluate relative distances on a molecular scale. It has been found that cholesterol is placed in such a position that it is not readily exposed to the solvent: the hydrophobic steroid ring is oriented parallel to the membrane phospholipids, the hydroxyl group is in close vicinity to the phospholipid ester carbonyl groups and the isooctyl side chain is deeply buried in the center of the membrane. These data are consistent with an organization such that mixtures of cholesterol and phospholipids present a packing similar to that found in interdigitated lipid bilayer systems.

Loci controlling plasma non-HDL and HDL cholesterol levels in a C57BL /6J x CASA /Rk intercross
Sehayek, E., E. M. Duncan, et al. (2003), J Lipid Res 44(9): 1744-50.
Abstract: Plasma non-HDL and HDL cholesterol levels are predictors of cardiovascular diseases. We carried out a genetic cross between two laboratory inbred mouse strains, C57BL/6J and CASA/Rk, to detect loci that control the plasma levels of non-HDL and HDL cholesterol. With regard to non-HDL cholesterol, chow-fed CASA/Rk males and females had 87% and 25% higher levels, respectively, than did C57BL/6Js. The levels of non-HDL cholesterol in F1s were similar to C57BL/6J. There was no strain difference in HDL cholesterol levels. An intercross between F1s was performed, and plasma non-HDL and HDL cholesterol was measured in 185 male and 184 female mice. In both male and female F2 mice, plasma non-HDL and HDL cholesterol levels were unimodally distributed; however, in both cases the values for females were significantly lower than for males. Therefore, linkage analysis was performed with sex as a covariate. Significant linkage for non-HDL cholesterol was found on chromosome 6 at 49 cM (LOD 5.17), chromosome 4 at 55 cM (LOD 4.22), and chromosome 8 at 7 cM (LOD 3.68). Significant linkage for HDL cholesterol was found on chromosome 9 at 14 cM (LOD 7.52) and chromosome 8 at 76 cM (LOD 4.69). A significant epistatic interaction involving loci on chromosomes 2 and 5 was also observed for non-HDL cholesterol. In summary, linkage analysis in these cross-identified novel loci confirmed previously identified loci in control of plasma non-HDL and HDL cholesterol and disclosed a novel interaction in controlling non-HDL cholesterol levels in the mouse.

Locus controlling LDL cholesterol response to dietary cholesterol is on baboon homologue of human chromosome 6
Kammerer, C. M., D. L. Rainwater, et al. (2002), Arterioscler Thromb Vasc Biol 22(10): 1720-5.
Abstract: OBJECTIVE: Cholesterolemic responses to dietary lipids are known to be heritable, but the genes that may affect this response have yet to be identified. Using segregation analysis, we previously detected a potential quantitative trait locus (QTL) in baboons that influenced low density lipoprotein cholesterol response to dietary cholesterol. We performed linkage analyses to locate this QTL by using data on the baboon genetic linkage map. METHODS AND RESULTS: We obtained evidence for linkage of this potential QTL to the same locus (D6S311) on the baboon homologue of human chromosome 6 by using variance components and parametric linkage analysis methods (2-point lod scores 4.17 genomic probability value 0.008 and 2.81 genomic P=0.10, respectively). Linkage analyses of serum levels of apolipoprotein B dietary response, a correlated trait, also gave weak suggestive evidence of linkage to this chromosomal region (maximum 2-point lod score 1.91). Although the LPA locus is nearby, we found no evidence of linkage with LPA. CONCLUSIONS: This report is the first to localize, in any primate species, a potential QTL that influences low density lipoprotein cholesterol response to dietary cholesterol.

Locus for quantitative HDL-cholesterol on chromosome 10q in Finnish families with dyslipidemia
Lilja, H. E., E. Suviolahti, et al. (2004), J Lipid Res 45(10): 1876-84.
Abstract: Decreased HDL-cholesterol (HDL-C) and familial combined hyperlipidemia (FCHL) are the two most common familial dyslipidemias predisposing to premature coronary heart disease (CHD). These dyslipidemias share many phenotypic features, suggesting a partially overlapping molecular pathogenesis. This was supported by our previous pooled data analysis of the genome scans for low HDL-C and FCHL, which identified three shared chromosomal regions for a qualitative HDL-C trait on 8q23.1, 16q23.3, and 20q13.32. This study further investigates these regions as well as two other loci we identified earlier for premature CHD on 2q31 and Xq24 and a locus for high serum triglycerides (TGs) on 10q11. We analyzed 67 microsatellite markers in an extended study sample of 1,109 individuals from 92 low HDL-C or FCHL families using both qualitative and quantitative lipid phenotypes. These analyses provided evidence for linkage (a logarithm of odds score of 3.2) on 10q11 using a quantitative HDL-C trait. Importantly, this region, previously linked to TGs, body mass index, and obesity, provided evidence for association for quantitative TGs (P = 0.0006) and for a combined trait of HDL-C and TGs (P = 0.008) with marker D10S546. Suggestive evidence for linkage also emerged for HDL-C on 2q31 and for TGs on 20q13.32. Finnish families ascertained for dyslipidemias thus suggest that 10q11, 2q31, and 20q13.32 harbor loci for HDL-C and TGs.

Locus on chromosome 6p linked to elevated HDL cholesterol serum levels and to protection against premature atherosclerosis in a kindred with familial hypercholesterolemia
Canizales-Quinteros, S., C. A. Aguilar-Salinas, et al. (2003), Circ Res 92(5): 569-76.
Abstract: Heterozygous familial hypercholesterolemia (FH) is a highly atherogenic genetic disorder leading to premature coronary heart disease (CHD), usually before 60 years of age. We studied an extended multigenerational kindred with FH linked to chromosome 1p32 in which atherosclerotic complications were either delayed or prevented in individuals with elevated HDL cholesterol (HDL-C) levels or hyperalphalipoproteinemia (HA). Premature CHD was observed in FH individuals without HA. The study of this family established that the HA trait in the family also followed an autosomal dominant mode of inheritance with a pattern of segregation independent from FH. We identified a locus on chromosome 6 linked to elevated HDL-C levels (HA) in this family. Haplotype analysis refined the localization to a 7.32-cM interval (73 to 80 cM from pter) flanked by markers D6S1280 and D6S1275. Parametric 2-point and multipoint analyses yielded maximum LOD scores of 3.05 and 3.17, respectively. This finding was confirmed with a nonparametric multipoint score of 3.78 (P=0.0009). We propose that this locus, linked to elevated HDL-C levels, confers protection against premature CHD within an FH context.


First Page Previous Page Next Page Last Page



Sitemap
Link | Link | Link | Link | Link | Link | Link | Link

Search the Dr Huxt site:

powered by FreeFind



Last Modified: 29 January 2006
http://www.huxt.com