Cholesterol Articles and Abstracts

For medical practitioners and the general public - Cholesterol Journal Article Catalog.

Cholesterol Journal Articles



Record 9601 to 9620
First Page Previous Page Next Page Last Page
Ovarian cancer, cholesterol, and eggs: a case-control analysis
Pirozzo, S., D. Purdie, et al. (2002), Cancer Epidemiol Biomarkers Prev 11(10 Pt 1): 1112-4.

Overall survival of breast cancer patients in relation to preclinically determined total serum cholesterol, body mass index, height and cigarette smoking: a population-based study
Vatten, L. J., O. P. Foss, et al. (1991), Eur J Cancer 27(5): 641-6.
Abstract: Mean overall 5-year survival related to preclinically determined total serum cholesterol, body mass index (BMI), height and cigarette smoking has been analysed among 242 incident cases of breast cancer aged 36-63 years that developed in a population of 24,329 Norwegian women during a mean follow-up of 12 years (range 11-14). The study factors were ascertained at least 1 year prior to diagnosis (mean = 8 years), and the cases have been followed up with respect to death for a mean time of approximately 5 years after diagnosis. Patients whose preclinical total serum cholesterol values were within the highest quartile (greater than or equal to 7.52 mmol/l, mean = 8.58 mmol/l) of the underlying population had a hazard ratio of dying of 2.0 (95% confidence limits, 1.1 and 3.7) compared to cases with cholesterol values in the lowest quartile (mean = 5.28 mmol/l), after adjustment for age at diagnosis, clinical stage, and body mass index. In relation to BMI (Quetelet's index: weight/height2) patients who were obese prior to diagnosis were at higher risk of dying than those who were lean. Compared to patients in the lowest quartile of BMI (mean Quetelet = 21), the hazard ratio was 2.1 (95% confidence limits, 1.2 and 3.8) for patients in the highest quartile (mean Quetelet = 30), after adjustment for age at diagnosis, clinical stage, and total serum cholesterol. For height and for cigarette smoking, no relation with survival was observed. A potential problem of this study might be insufficient information about other well known prognostic factors, but the results suggest that preclinical total serum cholesterol and BMI are positively associated with the risk of dying among women who develop breast cancer.

Overestimation of HDL-cholesterol using a homogeneous "direct" assay
Zhao, W., C. Chaffin, et al. (2004), J Clin Lab Anal 18(1): 42-4.
Abstract: Direct HDL-cholesterol (HDLc) assays have several advantages over other assays that are more laborious and time-consuming. A recent College of American Pathologists (CAP) report indicates that at least 385 Beckman LX-20 analyzers use the selective detergent (homogeneous or direct) method for analyzing HDLc. There is no published evaluation of direct HDLc assays on the Beckman platform. Here we report our evaluation of a direct HDLc assay marketed by Beckman for the Beckman LX-20 analyzers. In general, the assay performed well; however, the total error was not within National Cholesterol Education Program (NCEP) guidelines. This was largely because of a significant positive bias that appeared to be due, at least in part, to triglycerides. This bias was worse at HDLc concentrations <40 mg/dL, which may make it difficult to identify a low HDLc concentration and consequently an increased risk for cardiovascular disease (CVD).

Overexpression of ABCG5 and ABCG8 promotes biliary cholesterol secretion and reduces fractional absorption of dietary cholesterol
Yu, L., J. Li-Hawkins, et al. (2002), J Clin Invest 110(5): 671-80.
Abstract: Two ATP-binding cassette (ABC) transporters, ABCG5 and ABCG8, have been proposed to limit sterol absorption and to promote biliary sterol excretion in humans. To test this hypothesis, a P1 clone containing the human ABCG5 and ABCG8 genes was used to generate transgenic mice. The transgenes were expressed primarily in the liver and small intestine, mirroring the expression pattern of the endogenous genes. Transgene expression only modestly affected plasma and liver cholesterol levels but profoundly altered cholesterol transport. The fractional absorption of dietary cholesterol was reduced by about 50%, and biliary cholesterol levels were increased more than fivefold. Fecal neutral sterol excretion was increased three- to sixfold and hepatic cholesterol synthesis increased two- to fourfold in the transgenic mice. No significant changes in the pool size, composition, and fecal excretion of bile acids were observed in the transgenic mice. Transgene expression attenuated the increase in hepatic cholesterol content induced by consumption of a high cholesterol diet. These results demonstrate that increased expression of ABCG5 and ABCG8 selectively drives biliary neutral sterol secretion and reduces intestinal cholesterol absorption, leading to a selective increase in neutral sterol excretion and a compensatory increase in cholesterol synthesis.

Overexpression of an Arabidopsis cDNA encoding a sterol-C24(1)-methyltransferase in tobacco modifies the ratio of 24-methyl cholesterol to sitosterol and is associated with growth reduction
Schaller, H., P. Bouvier-Nave, et al. (1998), Plant Physiol 118(2): 461-9.
Abstract: Higher plants synthesize 24-methyl sterols and 24-ethyl sterols in defined proportions. As a first step in investigating the physiological function of this balance, an Arabidopsis cDNA encoding an S-adenosyl-L-methionine 24-methylene lophenol-C24(1)-methyltransferase, the typical plant enzyme responsible for the production of 24-ethyl sterols, was expressed in tobacco (Nicotiana tabacum L.) under the control of a constitutive promoter. Transgenic plants displayed a novel 24-alkyl-Delta5-sterol profile: the ratio of 24-methyl cholesterol to sitosterol, which is close to 1 in the wild type, decreased dramatically to values ranging from 0.01 to 0.31. In succeeding generations of transgenic tobacco, a high S-adenosyl-L-methionine 24-methylene lophenol-C24(1)-methyltransferase enzyme activity and, consequently, a low ratio of 24-methyl cholesterol to sitosterol, was associated with reduced growth compared with the wild type. However, this new morphological phenotype appeared only below the threshold ratio of 24-methyl cholesterol to sitosterol of approximately 0.1. Because the size of cells was unchanged in small, transgenic plants, we hypothesize that a radical decrease of 24-methyl cholesterol and/or a concomitant increase of sitosterol would be responsible for a change in cell division through as-yet unknown mechanisms.

Overexpression of apolipoprotein A-I promotes reverse transport of cholesterol from macrophages to feces in vivo
Zhang, Y., I. Zanotti, et al. (2003), Circulation 108(6): 661-3.
Abstract: BACKGROUND: Abundant data indicate that overexpression of apolipoprotein A-I (apoA-I) in mice inhibits atherosclerosis. One mechanism is believed to be promotion of reverse cholesterol transport, but no direct proof of this concept exists. We developed a novel approach to trace reverse transport of labeled cholesterol specifically from macrophages to the liver and feces in vivo and have applied this approach to investigate the ability of apoA-I overexpression to promote macrophage-specific reverse cholesterol transport. METHOD AND RESULTS: J774 macrophages were loaded with cholesterol by incubation with acetylated LDL, labeled with 3H-cholesterol, and then injected intraperitoneally into mice. Plasma and feces were collected at 24 hours and 48 hours, when mice were exsanguinated, tissues were harvested, and all were analyzed for tracer counts. 3H-cholesterol was found in the plasma, liver, and feces. For apoA-I overexpression, mice were injected intravenously with apoA-I adenovirus (1011 particles per animal) 3 days before labeled macrophages were injected. ApoA-I overexpression led to significantly higher 3H-cholesterol in plasma, liver, and feces. The amount of 3H-tracer in the liver was 35% higher (P<0.05) and the 3H-tracer excreted into feces over 48 hours was 63% higher (P<0.05) in apoA-I-expressing mice than in control mice. CONCLUSIONS: Injection of 3H-cholesterol-labeled macrophage foam cells is a method of measuring reverse cholesterol transport specifically from macrophages to feces in vivo, and apoA-I overexpression promotes macrophage-specific reverse cholesterol transport.

Overexpression of cholesterol transporter StAR increases in vivo rates of bile acid synthesis in the rat and mouse
Ren, S., P. B. Hylemon, et al. (2004), Hepatology 40(4): 910-7.
Abstract: Bile acid synthesis (BAS) occurs mainly via two pathways: the "neutral" pathway, which is initiated by highly regulated microsomal CYP7A1, and an "acidic" pathway, which is initiated by mitochondrial CYP27A1. Previously, we have shown that overexpression of the steroidogenic acute regulatory protein (StAR), a mitochondrial cholesterol transport protein, increases bile acid biosynthesis more than 5-fold via the acidic pathway in primary rat hepatocytes. This observation suggests that mitochondrial cholesterol transport is the rate-limiting step of BAS via this pathway. The objective of this study was to determine the effect of increased StAR on rates of BAS in vivo. Overexpression of StAR and CYP7A1 were mediated via infection with recombinant adenoviruses. BAS rates were determined in chronic biliary-diverted rats and mice, and in mice with an intact enterohepatic circulation. The protein/messenger RNA levels of StAR and CYP7A1 increased dramatically following overexpression. Overexpression of StAR or CYP7A1 led to a similar 2-fold (P <.01) increase in BAS over up-regulated (approximately 2-fold) 3-day chronic biliary-diverted control rats. Additionally, overexpression of StAR led to more than 3- and 6-fold increases over controls in the rates of BAS in biliary-diverted and intact mice, respectively (P <.01). In conclusion, in both rats and mice in vivo, overexpression of StAR led to a marked increase in the rates of BAS initiated by delivery of cholesterol to mitochondria containing CYP27A1.

Overexpression of CYP27 in hepatic and extrahepatic cells: role in the regulation of cholesterol homeostasis
Hall, E., P. Hylemon, et al. (2001), Am J Physiol Gastrointest Liver Physiol 281(1): G293-301.
Abstract: In the liver, sterol 27-hydroxylase (CYP27) participates in the classic and alternative pathways of bile acid biosynthesis from cholesterol (Chol). In extrahepatic tissues, CYP27 converts intracellular Chol to 27-hydroxycholesterol (27OH-Chol), which may regulate the activity of 3-hydroxy-3-methylglutaryl CoA reductase (HMG-CoA-R). This study attempts to better define the role of CYP27 in the maintenance of Chol homeostasis in hepatic and extrahepatic cells by overexpressing CYP27 in Hep G2 cells and Chinese hamster ovary (CHO) cells through infection with a replication-defective recombinant adenovirus encoding for CMV-CYP27. After infection, CYP27 mRNA and protein levels increased dramatically. CYP27 specific activity also increased two- to fourfold in infected cells (P < or = 0.02), with a marked increase in conversion of (14)CChol to (14)C27OH-Chol (approximately 150%; P < or = 0.01). Accumulation of 27OH-Chol in CHO cells was associated with a 50% decrease in HMG-CoA-R specific activity (P < or = 0.02). In infected Hep G2 cells, the significant increase in bile acid synthesis (46%; P < or = 0.006), which prevented the accumulation of intracellular 27OH-Chol, resulted in increased HMG-CoA-R activity (183%; P < or = 0.02). Overexpression of CYP27 in Hep G2 cells also increased acyl CoA-cholesterol acyltransferase (71%, P < or = 0.02) and decreased cholesteryl ester hydrolase (55%, P < or = 0.02). In conclusion, CYP27 generates different physiological responses depending on cell type and presence or absence of bile acid biosynthetic pathways.

Over-expression of hepatic neutral cytosolic cholesteryl ester hydrolase in mice increases free cholesterol and reduces expression of HMG-CoAR, CYP27, and CYP7A1
Langston, T. B., P. B. Hylemon, et al. (2005), Lipids 40(1): 31-8.
Abstract: Hepatic neutral cytosolic cholesteryl ester hydrolase (hncCEH) is a key enzyme in the regulation of hepatic free cholesterol (FC). In examining the effects of over-expression of this enzyme on cholesterol homeostasis, mice were infected with a recombinant adenovirus construct (AdCEH) of the rat hncCEH cDNA driven by the human cytomegalovirus promoter. Cholesteryl esterase and p-nitrophenylcaprylate (PNPC) esterase activities were measured in liver postmitochondrial supernatants at 1, 3, 7, and 11 d after infection with AdCEH or a control virus expressing beta-galactosidase (AdbetaGAL). The PNPC esterase activity of AdCEH mice peaked threefold higher than controls on day 2, declining on subsequent days. In contrast, cholesteryl esterase peaked eightfold higher than controls on day 3, indicating a shift in substrate selectivity of hncCEH. Hepatic FC peaked at 144% of controls, 7 d postinfection. The mRNAs for cholesterol 7alpha-hydroxylase, sterol 27-hydroxylase, and HMG-CoA reductase decreased to 47, 46, and 58% of controls, respectively, on day 7, coinciding with peak FC concentrations. Coinciding with increased cholesteryl esterase activity, hepatic esterified cholesterol dropped precipitously from day 3 onward, to 11% of controls by day 11. Hepatic TAG levels also declined, consistent with the reported TAG lipase activity of hncCEH. These results demonstrate elevation of FC and depletion of cholesteryl esters by over-expression of hncCEH, which were resistant to compensatory responses by other enzymes of cholesterol homeostasis.

Overexpression of hormone-sensitive lipase in Chinese hamster ovary cells leads to abnormalities in cholesterol homeostasis
Kraemer, F. B., L. Fong, et al. (1997), J Lipid Res 38(8): 1553-61.
Abstract: Hormone-sensitive lipase (HSL) is an intracellular enzyme that functions as both a neutral triglyceride and cholesteryl ester hydrolase. In order to explore the effects of HSL on cholesterol homeostasis, Chinese hamster ovary (CHO) cells were transfected with rat HSL and several different stable cell lines that overexpress HSL mRNA, HSL protein, and HSL activity approximately 600-fold were isolated. Cells transfected with HSL contained less cholesteryl esters and unesterified cholesterol than control cells. HSL transfectants expressed 20-60% fewer LDL receptors than control cells when grown in lipid-depleted media or in the presence of mevinolin, as assessed by binding and degradation of LDL and immunoblotting of LDL receptors. In contrast, the rate of cholesterol synthesis and the activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase were increased 3- to 14-fold in HSL transfectants grown in sterol replete media. The rate of cholesterol synthesis and the activity of HMG-CoA reductase increased when cells were grown in lipid-depleted media, and remained markedly elevated compared to control cells. These results show that the regulation of LDL receptor expression and cholesterol synthesis can be dissociated through the actions of HSL and suggest multiple control mechanisms for sterol-responsive genes.

Overexpression of human diacylglycerol acyltransferase 1, acyl-coa:cholesterol acyltransferase 1, or acyl-CoA:cholesterol acyltransferase 2 stimulates secretion of apolipoprotein B-containing lipoproteins in McA-RH7777 cells
Liang, J. J., P. Oelkers, et al. (2004), J Biol Chem 279(43): 44938-44.
Abstract: The relative importance of each core lipid in the assembly and secretion of very low density lipoproteins (VLDL) has been of interest over the past decade. The isolation of genes encoding diacylglycerol acyltransferase (DGAT) and acyl-CoA:cholesterol acyltransferases (ACAT1 and ACAT2) provided the opportunity to investigate the effects of isolated increases in triglycerides (TG) or cholesteryl esters (CE) on apolipoprotein B (apoB) lipoprotein biogenesis. Overexpression of human DGAT1 in rat hepatoma McA-RH7777 cells resulted in increased synthesis, cellular accumulation, and secretion of TG. These effects were associated with decreased intracellular degradation and increased secretion of newly synthesized apoB as VLDL. Similarly, overexpression of human ACAT1 or ACAT2 in McA-RH7777 cells resulted in increased synthesis, cellular accumulation, and secretion of CE. This led to decreased intracellular degradation and increased secretion of VLDL apoB. Overexpression of ACAT2 had a significantly greater impact upon assembly and secretion of VLDL from liver cells than did overexpression of ACAT1. The addition of oleic acid (OA) to media resulted in a further increase in VLDL secretion from cells expressing DGAT1, ACAT1, or ACAT2. VLDL secreted from DGAT1-expressing cells incubated in OA had a higher TG:CE ratio than VLDL secreted from ACAT1- and ACAT2-expressing cells treated with OA. These studies indicate that increasing DGAT1, ACAT1, or ACAT2 expression in McA-RH7777 cells stimulates the assembly and secretion of VLDL from liver cells and that the core composition of the secreted VLDL reflects the enzymatic activity that is elevated.

Overexpression of human hepatic lipase and ApoE in transgenic rabbits attenuates response to dietary cholesterol and alters lipoprotein subclass distributions
Barbagallo, C. M., J. Fan, et al. (1999), Arterioscler Thromb Vasc Biol 19(3): 625-32.
Abstract: The effect of the expression of human hepatic lipase (HL) or human apoE on plasma lipoproteins in transgenic rabbits in response to dietary cholesterol was compared with the response of nontransgenic control rabbits. Supplementation of a chow diet with 0.3% cholesterol and 3.0% soybean oil for 10 weeks resulted in markedly increased levels of plasma cholesterol and VLDL and IDL in control rabbits as expected. Expression of either HL or apoE reduced plasma cholesterol response by 75% and 60%, respectively. The HL transgenic rabbits had substantial reductions in medium and small VLDL and IDL fractions but not in larger VLDL. LDL levels were also reduced, with a shift from larger, more buoyant to smaller, denser particles. In contrast, apoE transgenic rabbits had a marked reduction in the levels of large VLDLs, with a selective accumulation of IDLs and large buoyant LDLs. Combined expression of apoE and HL led to dramatic reductions of total cholesterol (85% versus controls) and of total VLDL+IDL+LDL (87% versus controls). HDL subclasses were remodeled by the expression of either transgene and accompanied by a decrease in HDL cholesterol compared with controls. HL expression reduced all subclasses except for HDL2b and HDL2a, and expression of apoE reduced large HDL1 and HDL2b. Extreme HDL reductions (92% versus controls) were observed in the combined HL+apoE transgenic rabbits. These results demonstrate that human HL and apoE have complementary and synergistic functions in plasma cholesterol and lipoprotein metabolism.

Overexpression of human lecithin cholesterol acyltransferase leads to hyperalphalipoproteinemia in transgenic mice
Vaisman, B. L., H. G. Klein, et al. (1995), J Biol Chem 270(20): 12269-75.
Abstract: Lecithin cholesterol acyltransferase (LCAT) is a key enzyme which catalyzes the esterification of free cholesterol present in plasma lipoproteins. In order to evaluate the role of LCAT in HDL metabolism, a 6.2-kilobase (kb) fragment consisting of 0.851 and 1.134 kb of the 5'- and 3'-flanking regions, as well as the entire human LCAT gene, was utilized to develop transgenic mice. Three different transgenic mouse lines overexpressing human LCAT at plasma levels 11-, 14-, and 109-fold higher than non-transgenic mice were established. Northern blot hybridization analysis demonstrated that the injected 6.2-kb fragment contained the necessary DNA sequences to direct tissue specific expression of the human LCAT gene in mouse liver. Compared to age- and sex-matched controls, total cholesterol and HDL cholesterol levels were increased in all 3 transgenic mice lines by 124-218 and 123-194%, respectively, while plasma triglyceride concentrations remained similar to that of control animals. Fast protein liquid chromatography analysis of transgenic mouse plasma revealed marked increases in high density liposportin (HDL)-cholesteryl ester and phospholipid as well as the formation of larger size HDL. Thus, the majority of the increase in transgenic plasma cholesterol concentrations was due to accumulation of cholesteryl ester in HDL consistent with enhanced esterification of free cholesterol in mouse HDL by human LCAT. Plasma concentrations of apoA-I, apoA-II, and apoE were increased in high expressor homozygote mice who also demonstrated an accumulation of an apoE-rich HDL1. Like the mouse enzyme, human LCAT was found to be primarily associated with mouse HDL. Our studies demonstrate a high correlation between plasma LCAT activity and total as well as HDL cholesterol levels establishing that in mice LCAT modulates plasma HDL concentrations. Overexpression of LCAT in mice leads to HDL elevation as well as increased heterogeneity of the HDL lipoprotein particles, indicating that high levels of plasma LCAT activity may be associated with hyperalphalipoproteinemia and enhanced reverse cholesterol transport.

Overexpression of human lecithin:cholesterol acyltransferase in cholesterol-fed rabbits: LDL metabolism and HDL metabolism are affected in a gene dose-dependent manner
Brousseau, M. E., S. Santamarina-Fojo, et al. (1997), J Lipid Res 38(12): 2537-47.
Abstract: Lecithin:cholesterol acyltransferase (LCAT) is an enzyme well known for its involvement in the intravascular metabolism of high density lipoproteins; however, its role in the regulation of apolipoprotein (apo) B-containing lipoproteins remains elusive. The present study was designed to investigate the metabolic mechanisms responsible for the differential lipoprotein response observed between cholesterol-fed hLCAT transgenic and control rabbits. 131I-labeled HDL apoA-I and 125I-labeled LDL kinetics were assessed in age- and sex-matched groups of rabbits with high (HE), low (LE), or no hLCAT expression after 6 weeks on a 0.3% cholesterol diet. In HE, the mean total cholesterol concentration on this diet, mg/dl (230 +/- 50), was not significantly different from that of either LE (313 +/- 46) or controls (332 +/- 52) due to the elevated level of HDL-C observed in HE (127 +/- 19), as compared with both LE (100 +/- 33) and controls (31 +/- 4). In contrast, the mean nonHDL-C concentration for HE (103 +/- 33) was much lower than that for either LE (213 +/- 39) or controls (301 +/- 55). FPLC analysis of plasma confirmed that HDL was the predominant lipoprotein class in HE on the cholesterol diet, whereas cholesteryl ester-rich, apoB-containing lipoproteins characterized the plasma of LE and, most notably, of controls. In vivo kinetic experiments demonstrated that the differences in HDL levels noted between the three groups were attributable to distinctive rates of apoA-I catabolism, with the mean fractional catabolic rate (FCR, d-1) of apoA-I slowest in HE (0.282 +/- 0.03), followed by LE (0.340 +/- 0.01) and controls (0.496 +/- 0.04). A similar, but opposite, pattern was observed for nonHDL-C levels and LDL metabolism (h-1), such that HE had the lowest nonHDL-C levels with the fastest rate of clearance (0.131 +/- 0.027), followed by LE (0.057 +/- 0.009) and controls (0.031 +/- 0.001). Strong correlations were noted between LCAT activity and both apoA-I (r= -0.868, P < 0.01) and LDL (r = 0.670, P = 0.06) FCR, indicating that LCAT activity played a major role in the mediation of lipoprotein metabolism. In summary, these data are the first to show that LCAT overexpression can regulate both LDL and HDL metabolism in cholesterol-fed rabbits and provide a potential explanation for the prevention of diet-induced atherosclerosis observed in our previous study.

Overexpression of human lecithin:cholesterol acyltransferase in mice offers no protection against diet-induced atherosclerosis
Mehlum, A., E. Gjernes, et al. (2000), Apmis 108(5): 336-42.
Abstract: Human lecithin:cholesterol acyltransferase (LCAT) is a key enzyme in the metabolism of cholesterol. We have used homozygous transgenic mice overexpressing the human LCAT transgene to study the effect of a "Western-type" atherogenic diet (30% fat, 5% cholesterol and 2% cholic acid) on their LCAT expression, activity, lipoprotein profile and tendency to develop atherosclerosis. The LCAT activity was 35-fold higher in serum of the homozygous transgenic mice than in murine control serum, and decreased 11-20% in the transgenic mice when fed the atherogenic diet. The total cholesterol and high-density lipoprotein cholesterol (HDL-C) concentrations were approximately doubled in the transgenic mice compared with the controls when both groups were fed a regular chow diet. In mice on the atherogenic diet, the triglyceride concentration decreased about 50% to the same level in transgenic and control mice. Total cholesterol and HDL-C concentrations increased and were 60-80% higher in the transgenic mice. The expression of LCAT mRNA in the liver was decreased by 49-60% in the transgenic mice when fed the atherogenic diet. The development of atherosclerosis was similar in transgenic and control mice. Thus, the 14- to 27-fold higher LCAT activity and the higher HDL-C concentrations in the homozygous LCAT transgenic mice had no significant protective influence on the development of diet-induced atherosclerosis.

Overexpression of lecithin:cholesterol acyltransferase in transgenic rabbits prevents diet-induced atherosclerosis
Hoeg, J. M., S. Santamarina-Fojo, et al. (1996), Proc Natl Acad Sci U S A 93(21): 11448-53.
Abstract: Lecithin:cholesterol acyltransferase (LCAT) is a key plasma enzyme in cholesterol and high density lipoprotein (HDL) metabolism. Transgenic rabbits overexpressing human LCAT had 15-fold greater plasma LCAT activity that nontransgenic control rabbits. This degree of overexpression was associated with a 6.7-fold increase in the plasma HDL cholesterol concentration in LCAT transgenic rabbits. On a 0.3% cholesterol diet, the HDL cholesterol concentrations increased from 24 +/- 1 to 39 +/- 3 mg/dl in nontransgenic control rabbits (n = 10; P < 0.05) and increased from 161 +/- 5 to 200 +/- 21 mg/dl (P < 0.001) in the LCAT transgenic rabbits (n = 9). Although the baseline non-HDL concentrations of control (4 +/- 3 mg/dl) and transgenic rabbits (18 +/- 4 mg/dl) were similar, the cholesterol-rich diet raised the non-HDL cholesterol concentrations, reflecting the atherogenic very low density, intermediate density, and low density lipoprotein particles observed by gel filtration chromatography. The non-HDL cholesterol rose to 509 +/- 57 mg/dl in controls compared with only 196 +/- 14 mg/dl in the LCAT transgenic rabbits (P < 0.005). The differences in the plasma lipoprotein response to a cholesterol-rich diet observed in the transgenic rabbits paralleled the susceptibility to developing aortic atherosclerosis. Compared with nontransgenic controls, LCAT transgenic rabbits were protected from diet-induced atherosclerosis with significant reductions determined by both quantitative planimetry (-86%; P < 0.003) and quantitative immunohistochemistry (-93%; P < 0.009). Our results establish the importance of LCAT in the metabolism of both HDL and apolipoprotein B-containing lipoprotein particles with cholesterol feeding and the response to diet-induced atherosclerosis. In addition, these findings identify LCAT as a new target for therapy to prevent atherosclerosis.

Overexpression of MDR1 in an intestinal cell line results in increased cholesterol uptake from micelles
Tessner, T. G. and W. F. Stenson (2000), Biochem Biophys Res Commun 267(2): 565-71.
Abstract: The multiple drug resistance protein, MDR1, is highly expressed on the apical surface of intestinal epithelial cells. The physiologic substrate of this protein remains unclear. Several studies using compounds known to act as MDR1 inhibitors have suggested that MDR1 may be involved in the transport of cholesterol from the plasma membrane to the endoplasmic reticulum where it is esterified. To examine the role of MDR1 in cholesterol uptake by intestinal cells, the rat intestinal epithelial cell line IEC-18, was stably transfected with human MDR1. MDR1-transfected cells exhibited increased expression of MDR1 protein, reduced accumulation of vinblastine and increased uptake of (3)Hcholesterol from cholesterol/monolein/taurocholate micelles. These studies provide the first direct evidence that the level of MDR1 expression in intestinal cells can influence the amount of cholesterol taken up by those cells. This is also the first demonstration that a multiple drug resistance protein can function in the net uptake, rather than efflux, of a substrate.

Overexpression of sterol carrier protein-2 mRNA in patients with cholesterol gallstones
Cui, N. Q., S. K. Zhang, et al. (2005), Hepatobiliary Pancreat Dis Int 4(1): 117-20.
Abstract: BACKGROUND: Hypersecretion of biliary cholesterol is believed to be one of the important causes of lithogenic bile. Sterol carrier protein-2(SCP2) participates in cholesterol trafficking and metabolism and may play a key role in cholesterol gallstone formation. This study was undertaken to investigate the expression of liver SCP2 mRNA in patients with cholesterol gallstone and those patients with non-cholesterol gallstone. METHODS: The expression of liver SCP2mRNA was studied in 36 patients with cholesterol gallstone and 30 patients with non-cholesterol gallstone by reverse transcription-polymerase chain reaction (RT-PCR). RESULT: The expression of SCP2 mRNA was increased more significantly in patients with cholesterol gallstone than in patients with non-cholesterol gallstone. CONCLUSION: The SCP2 gene was overexpressed in patients with cholesterol gallstone, indicating that SCP2 may be one of the important causes of cholesterol gallstone.

Overexpression of the HDL receptor SR-BI alters plasma HDL and bile cholesterol levels
Kozarsky, K. F., M. H. Donahee, et al. (1997), Nature 387(6631): 414-7.
Abstract: The risk of atherosclerosis, a leading cause of cardiovascular disease and death, is inversely related to plasma levels of high-density lipoprotein (HDL) cholesterol, although the mechanism of this protective effect is unclear. The class B scavenger receptor, SR-BI, is the first HDL receptor to be well defined at a molecular level and is a mediator of selective cholesterol uptake in vitro. It is expressed most abundantly in steroidogenic tissues, where it is coordinately regulated with steroidogenesis by adrenocorticotropic hormone (ACTH), human chorionic gonadotropin (hCG) and oestrogen, and in the liver, where its expression in rats is suppressed by oestrogen. Here we show that adenovirus-mediated, hepatic overexpression of SR-BI in mice on both sinusoidal and canalicular surfaces of hepatocytes results in the virtual disappearance of plasma HDL and a substantial increase in biliary cholesterol. SR-BI may directly mediate these effects by increasing hepatic HDL cholesterol uptake or by increasing cholesterol secretion into bile, or both. These results indicate that SR-BI may be important in hepatic HDL metabolism, in determining plasma HDL concentrations, and in controlling cholesterol concentrations in bile, and thus may influence the development and progression of atherosclerosis and gallstone disease.

Overexpression of the myelin proteolipid protein leads to accumulation of cholesterol and proteolipid protein in endosomes/lysosomes: implications for Pelizaeus-Merzbacher disease
Simons, M., E. M. Kramer, et al. (2002), J Cell Biol 157(2): 327-36.
Abstract: Duplications and overexpression of the proteolipid protein (PLP) gene are known to cause the dysmyelinating disorder Pelizaeus-Merzbacher disease (PMD). To understand the cellular response to overexpressed PLP in PMD, we have overexpressed PLP in BHK cells and primary cultures of oligodendrocytes with the Semliki Forest virus expression system. Overexpressed PLP was routed to late endosomes/lysosomes and caused a sequestration of cholesterol in these compartments. Similar results were seen in transgenic mice overexpressing PLP. With time, the endosomal/lysosomal accumulation of cholesterol and PLP led to an increase in the amount of detergent-insoluble cellular cholesterol and PLP. In addition, two fluorescent sphingolipids, BODIPY-lactosylceramide and -galactosylceramide, which under normal conditions are sorted to the Golgi apparatus, were missorted to perinuclear structures. This was also the case for the lipid raft marker glucosylphosphatidylinositol-yellow fluorescence protein, which under normal steady-state conditions is localized on the plasma membrane and to the Golgi complex. Taken together, we show that overexpression of PLP leads to the formation of endosomal/lysosomal accumulations of cholesterol and PLP, accompanied by the mistrafficking of raft components. We propose that these accumulations perturb the process of myelination and impair the viability of oligodendrocytes.


First Page Previous Page Next Page Last Page



Sitemap
Link | Link | Link | Link | Link | Link | Link | Link

Search the Dr Huxt site:

powered by FreeFind



Last Modified: 29 January 2006
http://www.huxt.com