Cholesterol Articles and Abstracts

For medical practitioners and the general public - Cholesterol Journal Article Catalog.

Cholesterol Journal Articles



Record 2501 to 2520
First Page Previous Page Next Page Last Page
Cholesterol is an important factor affecting the membrane insertion of beta-amyloid peptide (A beta 1-40), which may potentially inhibit the fibril formation
Ji, S. R., Y. Wu, et al. (2002), J Biol Chem 277(8): 6273-9.
Abstract: beta-Amyloid peptide (A beta), a normal constituent of neuronal and non-neuronal cells, has been proven to be the major component of extracellular plaque of Alzheimer's disease. Interactions between A beta and neuronal membranes have been postulated to play an important role in the neuropathology of Alzheimer's disease. Here we show that A beta is able to insert into lipid bilayer. The membrane insertion ability of A beta is critically controlled by the ratio of cholesterol to phospholipids. In a low concentration of cholesterol A beta prefers to stay in membrane surface region mainly in a beta-sheet structure. In contrast, as the ratio of cholesterol to phospholipids rises above 30 mol%, A beta can insert spontaneously into lipid bilayer by its C terminus. During membrane insertion A beta generates about 60% alpha-helix and removes almost all beta-sheet structure. Fibril formation experiments show that such membrane insertion can reduce fibril formation. Our findings reveal a possible pathway by which A beta prevents itself from aggregation and fibril formation by membrane insertion.

Cholesterol is associated with stroke, but is not a risk factor
Thrift, A. G. (2004), Stroke 35(6): 1524-5.

Cholesterol is converted to 7 alpha-hydroxy-3-oxo-4-cholestenoic acid in liver mitochondria. Evidence for a mitochondrial sterol 7 alpha-hydroxylase
Axelson, M., J. Shoda, et al. (1992), J Biol Chem 267(3): 1701-4.
Abstract: The metabolism of cholesterol in isolated intact pig liver mitochondria has been investigated. Six major cholesterol metabolites were identified by gas-liquid chromatography-mass spectrometry, the metabolic end product being 7 alpha-hydroxy-3-oxo-4-cholestenoic acid. Incubations with the synthesized intermediates suggested that the major pathway from cholesterol to this acid proceeds via the sequence of 26-hydroxylation, 7 alpha-hydroxylation, further oxidation of the side chain and oxidation/isomerization in the A-ring. The observed reactions prove that in addition to a sterol 26-hydroxylase, pig liver mitochondria contain significant amounts of a 7 alpha-hydroxylase active on side chain oxygenated 3 beta-hydroxy-delta 5-C27 steroids, an oxidoreductase active in the side chain of 26-hydroxylated steroids and a 3 beta-hydroxy-delta 5 steroid oxidoreductase active on 7 alpha-hydroxylated C27 steroids. Since 7 alpha-hydroxy-3-oxo-4-cholestenoic acid is believed to be an important precursor of chenodeoxycholic acid, this study shows that the first reactions in the biosynthesis of bile acids can be exclusively mitochondrial and thereby bypass microsomal cholesterol 7 alpha-hydroxylase as the rate-limiting enzyme.

Cholesterol is essential for macrophage inflammatory protein 1 beta binding and conformational integrity of CC chemokine receptor 5
Nguyen, D. H. and D. Taub (2002), Blood 99(12): 4298-306.
Abstract: The chemokine receptor, CCR5, is used as a human immunodeficiency virus coreceptor in combination with CD4 during transmission and early infection. CCR5 has been shown to be palmitoylated and targeted to cholesterol- and sphingolipid-rich membrane microdomains termed "lipid rafts." However, the role of cholesterol and lipid rafts on chemokine binding and signaling through CCR5 remains unknown. We found that cholesterol extraction by hydroxypropyl-beta-cyclodextrin (BCD) significantly reduced the binding and signaling of macrophage inflammatory protein 1 beta (MIP-1 beta) using CCR5-expressing CEM-NKR T cells. Reloading treated cells with cholesterol but not 4-cholesten-3-one, an oxidized form of cholesterol, restored MIP-1 beta binding to BCD-treated cells. Antibodies specific for distinct CCR5 epitopes lost their ability to bind to the cell surface after cholesterol extraction to varying degrees. Moreover, cells stained with fluorescently labeled MIP-1 beta extensively colocalized with the GM1 lipid raft marker while using anti-CCR5 antibodies; most of CCR5 on these cells only partially colocalized with GM1, suggesting that active ligand binding facilitates receptor association with lipid rafts or that raft association promotes a higher affinity conformation of CCR5. Together, these data demonstrate that cholesterol and lipid rafts are important for the maintenance of the CCR5 conformation and are necessary for both the binding and function of this chemokine receptor.

Cholesterol is essential for mitosis progression and its deficiency induces polyploid cell formation
Fernandez, C., V. Lobo Md Mdel, et al. (2004), Exp Cell Res 300(1): 109-20.
Abstract: As an essential component of mammalian cell membranes, cells require cholesterol for proliferation, which is either obtained from plasma lipoproteins or synthesized intracellularly from acetyl-CoA. In addition to cholesterol, other non-sterol mevalonate derivatives are necessary for DNA synthesis, such as the phosphorylated forms of isopentane, farnesol, geranylgeraniol, and dolichol. The aim of the present study was to elucidate the role of cholesterol in mitosis. For this, human leukemia cells (HL-60) were incubated in a cholesterol-free medium and treated with SKF 104976, which inhibits cholesterol biosynthesis by blocking sterol 14alpha-demethylase, and the expression of relevant cyclins in the different phases of the cell cycle was analyzed by flow cytometry. Prolonged cholesterol starvation induced the inhibition of cytokinesis and the formation of polyploid cells, which were multinucleated and had mitotic aberrations. Supplementing the medium with cholesterol completely abolished these effects, demonstrating they were specifically due to cholesterol deficiency. This is the first evidence that cholesterol is essential for mitosis completion and that, in the absence of cholesterol, the cells fail to undergo cytokinesis, entered G1 phase at higher DNA ploidy (tetraploidy), and then progressed through S (rereplication) into G2, generating polyploid cells.

Cholesterol is important in control of EGF receptor kinase activity but EGF receptors are not concentrated in caveolae
Ringerike, T., F. D. Blystad, et al. (2002), J Cell Sci 115(Pt 6): 1331-40.
Abstract: We have investigated the localization and function of the epidermal growth factor receptor (EGFR) in normal cells, in cholesterol-depleted cells and in cholesterol enriched cells. Using immunoelectron microscopy we find that the EGFR is randomly distributed at the plasma membrane and not enriched in caveolae. Binding of EGF at 4 degrees C does not change the localization of EGFR, and by immunoelectron microscopy we find that only small amounts of bound EGF localize to caveolae. However, upon patching of lipid rafts, we find that a significant amount of the EGFR is localized within rafts. Depletion of the plasma membrane cholesterol causes increased binding of EGF, increased dimerization of the EGFR, and hyperphosphorylation of the EGFR. Addition of cholesterol was found to reduce EGF binding and reduce EGF-induced EGFR activation. Our results suggest that the plasma membrane cholesterol content directly controls EGFR activation.

Cholesterol is increased in the exofacial leaflet of synaptic plasma membranes of human apolipoprotein E4 knock-in mice
Hayashi, H., U. Igbavboa, et al. (2002), Neuroreport 13(4): 383-6.
Abstract: Inheritance of the apolipoprotein (apoE) epsilon4 allele is a risk factor for developing Alzheimer's disease (AD). The purpose of the present study was to determine effects of apoE-isoforms on the transbilayer distribution of cholesterol in synaptic plasma membranes (SPM) using mice expressing human apoE3 and apoE4. Total SPM cholesterol levels did not differ among the wild-type and apoE3 and apoE4 knock-in mice. However, a striking difference was observed in the transbilayer distribution of SPM cholesterol. ApoE4 knock-in mice showed an approximately 2-fold increase in exofacial leaflet cholesterol compared with apoE3 knock-in mice and wild-type mice. The results of this study suggest that pathogenic effects of apoE4 on AD development could be closely linked to alteration of cholesterol distribution in SPM.

Cholesterol is necessary both for the toxic effect of Abeta peptides on vascular smooth muscle cells and for Abeta binding to vascular smooth muscle cell membranes
Subasinghe, S., S. Unabia, et al. (2003), J Neurochem 84(3): 471-9.
Abstract: Accumulation of beta amyloid (Abeta) in the brain is central to the pathogenesis of Alzheimer's disease. Abeta can bind to membrane lipids and this binding may have detrimental effects on cell function. In this study, surface plasmon resonance technology was used to study Abeta binding to membranes. Abeta peptides bound to synthetic lipid mixtures and to an intact plasma membrane preparation isolated from vascular smooth muscle cells. Abeta peptides were also toxic to vascular smooth muscle cells. There was a good correlation between the toxic effect of Abeta peptides and their membrane binding. 'Ageing' the Abeta peptides by incubation for 5 days increased the proportion of oligomeric species, and also increased toxicity and the amount of binding to lipids. The toxicities of various Abeta analogs correlated with their lipid binding. Significantly, binding was influenced by the concentration of cholesterol in the lipid mixture. Reduction of cholesterol in vascular smooth muscle cells not only reduced the binding of Abeta to purified plasma membrane preparations but also reduced Abeta toxicity. The results support the view that Abeta toxicity is a direct consequence of binding to lipids in the membrane. Reduction of membrane cholesterol using cholesterol-lowering drugs may be of therapeutic benefit because it reduces Abeta-membrane binding.

Cholesterol is not crucial for the existence of microdomains in kidney brush-border membrane models
Milhiet, P. E., M. C. Giocondi, et al. (2002), J Biol Chem 277(2): 875-8.
Abstract: The external membrane leaflet plays a key role in the organization of the cell plasma membrane as a mosaic of ordered microdomains enriched in sphingolipids and cholesterol and of fluid domains. In this study, the thermotropic behavior and the topology of bilayers made of a phosphatidylcholine/sphingomyelin mixture, which mimicks the lipid composition of the external leaflet of renal brush-border membranes, were examined by differential scanning calorimetry and atomic force microscopy. In the absence of cholesterol, a broad phase separation process occurred where ordered gel phase domains of size varying from the mesoscopic to the microscopic scale, enriched in sphingomyelin, occupied half of the bilayer surface at room temperature. Increasing amounts of cholesterol progressively decreased the enthalpy of the transition and modified the topology of membranes domains up to a concentration of 33 mol % for which no membrane domains were detected. These results strongly suggest that, in membranes highly enriched in sphingolipids like renal and intestinal brush borders, there is a threshold close to the physiological concentration above which cholesterol acts as a suppressor rather than as a promoter of membrane domains. They also suggest that cholesterol depletion does not abolish the lateral heterogenity in brush-border membranes.

Cholesterol is poorly available for free apolipoprotein-mediated cellular lipid efflux from smooth muscle cells
Li, Q., A. Komaba, et al. (1993), Biochemistry 32(17): 4597-603.
Abstract: To study the mechanism for resistance of smooth muscle cells (SMC) to cholesterol efflux caused by lipid-free apolipoproteins Komaba, A., et al. (1992) J. Biol. Chem. 267, 17560-17566, the efflux of phospholipids and cholesterol was induced from mouse peritoneal macrophages (MP) and rat aortic SMC by phospholipid/triglyceride microemulsion, by human plasma high- and low-density lipoproteins (HDLs and LDLs), and by lipid-free human apolipoprotein (apo) A-I. The efflux of both lipids by the lipid microemulsion showed essentially the same kinetic profile for these two types of cells except that the rate of phospholipid efflux was 5-6 times slower by weight than cholesterol in both cases. The same ratio of cholesterol to phospholipid was also found in the efflux to LDLs. Lipid-free apoA-I mediated cellular cholesterol efflux, but the rate was much slower from SMC than from MP. However, the rate of apoA-I-mediated phospholipid efflux was similar between these two cells generating HDL-like particles, resulting in a high phospholipid:cholesterol ratio, (4-5):1 by weight, in the lipid efflux from SMC, in contrast with (0.8-1):1 in the lipid efflux from MP. When standardized for the cellular free cholesterol, the Vmax of cholesterol efflux induced by lipid-free apoA-I was 10 times slower from SMC than from MP, but only by at most 2-fold slower when lipid microemulsion was the acceptor. Thus, free cholesterol of SMC is less available than that of MP for free apolipoprotein-mediated generation of HDLs with cellular lipids.(ABSTRACT TRUNCATED AT 250 WORDS)

Cholesterol is required for endocytosis and endosomal escape of adenovirus type 2
Imelli, N., O. Meier, et al. (2004), J Virol 78(6): 3089-98.
Abstract: The species C adenovirus type 2 (Ad2) and Ad5 bind the coxsackievirus B Ad receptor and alphav integrin coreceptors and enter epithelial cells by clathrin-mediated endocytosis. This pathway is rapid and efficient. It leads to cell activation and the cholesterol-dependent formation of macropinosomes. Macropinosomes are triggered to release their contents when incoming Ad2 escapes from endosomes. Here, we show that cholesterol extraction of epithelial cells by methyl-beta-cyclodextrin (mbetaCD) treatment reduced Ad5-mediated luciferase expression approximately 4-fold. The addition of cholesterol to normal cells increased gene expression in a dose-dependent manner up to threefold, but it did not restore gene expression in mbetaCD-treated cells. mbetaCD had no effect in the presence of excess cholesterol, indicating that the inhibition of gene expression was due specifically to cholesterol depletion. Cholesterol depletion inhibited rapid Ad2 endocytosis, endosomal escape, and nuclear targeting, consistent with the notion that clathrin-dependent endocytosis of Ad2 is cholesterol dependent. In cholesterol-reduced cells, Ad2 internalized at a low rate, suggestive of an alternative, clathrin-independent, low-capacity entry pathway. While exogenous cholesterol completely restored rapid Ad2 endocytosis, macropinocytosis, and macropinosome disruption, it did not, surprisingly, restore viral escape from endosomes. Our results indicate that macropinosome disruption and endosomal escape of Ad2 are independent events in cells depleted of and then refilled with cholesterol, suggesting that viral escape from endosomes requires lipid-controlled membrane homeostasis, trafficking, or signaling.

Cholesterol is required for infection by Semliki Forest virus
Phalen, T. and M. Kielian (1991), J Cell Biol 112(4): 615-23.
Abstract: Semliki Forest virus (SFV) and many other enveloped animal viruses enter cells by a membrane fusion reaction triggered by the low pH within the endocytic pathway. In vitro, SFV fusion requires cholesterol in the target membrane, but the role of cholesterol in vivo is unknown. In this paper, the infection pathway of SFV was studied in mammalian and inset cells substantially depleted of sterol. Cholesterol-depleted cells were unaltered in their ability to bind, internalize, and acidify virus, but were blocked in SFV fusion and subsequent virus replication. Depleted cells could be infected by the cholesterol-independent vesicular stomatitis virus, which also enters cells via endocytosis and low pH-mediated fusion. The block in SFV infection was specifically reversed by cholesterol but not by cholestenone, which lacks the critical 3 beta-hydroxyl group. Cholesterol thus is central in the infection pathway of SFV, and may act in vivo to modulate infection by SFV and other pathogens.

Cholesterol is required for Leishmania donovani infection: implications in leishmaniasis
Pucadyil, T. J., P. Tewary, et al. (2004), Mol Biochem Parasitol 133(2): 145-52.
Abstract: Leishmania donovani is an obligate intracellular parasite that infects macrophages of the vertebrate host, resulting in visceral leishmaniasis in humans, which is usually fatal if untreated. The molecular mechanisms involved in host-parasite interaction leading to attachment on the cell surface and subsequent internalization of the parasite are poorly characterized. Cholesterol is a major constituent of eukaryotic membranes and plays a crucial role in cellular membrane organization, dynamics, function, and sorting. It is often found distributed non-randomly in domains in membranes. Recent observations suggest that cholesterol exerts many of its actions by maintaining a specialized type of membrane domain, termed "lipid rafts", in a functional state. Lipid rafts are enriched in cholesterol and sphingolipids, and have been thought to act as platforms through which signal transduction events are coordinated and pathogens gain entry to infect host cells. We report here that cholesterol depletion from macrophage plasma membranes using methyl-beta-cyclodextrin (MbetaCD) results in a significant reduction in the extent of leishmanial infection. Furthermore, the reduction in the ability of the parasite to infect host macrophages can be reversed upon replenishment of cell membrane cholesterol. Interestingly, these effects were not observed when parasites were serum-opsonized, indicating a specific requirement of cholesterol to mediate entry via the non-opsonic pathway. Importantly, we show that entry of Escherichia coli remains unaffected by cholesterol depletion. Our results therefore point to the specific requirement of plasma membrane cholesterol in efficient attachment and internalization of the parasite to macrophage cells leading to a productive infection. More importantly, these results are significant in developing novel therapeutic strategies to tackle leishmaniasis.

Cholesterol is required for surface transport of influenza virus hemagglutinin
Keller, P. and K. Simons (1998), J Cell Biol 140(6): 1357-67.
Abstract: Transport from the TGN to the basolateral surface involves a rab/N-ethylmaleimide-sensitive fusion protein (NSF)/soluble NSF attachment protein (SNAP)/SNAP receptor (SNARE) mechanism. Apical transport instead is thought to be mediated by detergent-insoluble sphingolipid-cholesterol rafts. By reducing the cholesterol level of living cells by 60-70% with lovastatin and methyl-beta-cyclodextrin, we show that the TGN-to-surface transport of the apical marker protein influenza virus hemagglutinin was slowed down, whereas the transport of the basolateral marker vesicular stomatitis virus glycoprotein as well as the ER-to-Golgi transport of both membrane proteins was not affected. Reduction of transport of hemagglutinin was accompanied by increased solubility in the detergent Triton X-100 and by significant missorting of hemagglutinin to the basolateral membrane. In addition, depletion of cellular cholesterol by lovastatin and methyl-beta-cyclodextrin led to missorting of the apical secretory glycoprotein gp-80, suggesting that gp-80 uses a raft-dependent mechanism for apical sorting. Our data provide for the first time direct evidence for the functional significance of cholesterol in the sorting of apical membrane proteins as well as of apically secreted glycoproteins.

Cholesterol is required for the formation of regulated and constitutive secretory vesicles from the trans-Golgi network
Wang, Y., C. Thiele, et al. (2000), Traffic 1(12): 952-62.
Abstract: We studied the role of cholesterol in regulated protein secretion in neuroendocrine cells by manipulating the cholesterol content of AtT-20 cells. Depletion of cellular cholesterol levels caused a reversible block of immature secretory granule biogenesis at the level of the trans-Golgi-network, whereas increased cholesterol levels promoted immature secretory granule formation. Cholesterol depletion also blocked the formation of constitutive secretory vesicles, but did not inhibit the transport between the endoplasmic reticulum and the Golgi complex. Our results indicate that the assembly of cholesterol-based lipid microdomains is required for the biogenesis of both regulated and constitutive secretory vesicles from the trans-Golgi-network in neuroendocrine cells.

Cholesterol is required for the fusion of single unilamellar vesicles with Mycoplasma capricolum
Tarshis, M., M. Salman, et al. (1993), Biophys J 64(3): 709-15.
Abstract: Small unilamellar vesicles (SUV) were prepared from the total lipid extract of Mycoplasma capricolum. The SUV were labeled with the fluorescent probe octadecylrhodamine B chloride (R18) to a level at which the R18 fluorescence was self-quenched. At pH 7.4 and 37 degrees C, and in the presence of 5% polyethylene glycol, an increase in the R18 fluorescence with time was observed when the R18-labeled SUV were introduced to a native M. capricolum cell suspension. The fluorescence dequenching resulting from dilution of the R18 into the unlabeled membranes of M. capricolum, was interpreted as a result of lipid mixing during fusion between the SUV and the mycoplasma cells. The presence of cholesterol in the SUV was found to be obligatory to allow SUV-mycoplasma fusion to occur. Adaptation of M. capricolum cells to grow in a medium containing low cholesterol concentration provided cells in which the unesterified cholesterol content was as low as 17 micrograms/mg cell protein. The fusion activity of the adapted cells was very low or nonexistent. Nonetheless, when an early exponential phase culture of the adapted cells was transferred to a cholesterol-rich medium, the cells accumulated cholesterol and regained their fusogenic activity. The cholesterol requirement for fusion in the target mycoplasma membrane was met by a variety of planar sterols having a free beta-hydroxyl group, but differing in the aliphatic side chain, e.g., beta-sitosterol or ergosterol, even though these sterols, having a bulky side chain, are preferentially localized in the outer leaflet of the lipid bilayer.(ABSTRACT TRUNCATED AT 250 WORDS)

Cholesterol is required for the polarized secretion of erythropoietin in Madin-Darby canine kidney cells
Maruyama, M., M. Kishimoto, et al. (2005), Arch Biochem Biophys 438(2): 174-81.
Abstract: It has already been reported that stably expressed exogenous human wild-type EPO (wtEPO) is preferentially secreted to the apical side and one of the three N-linked carbohydrate chains critically acts as an apical sorting determinant in Madin-Darby canine kidney (MDCK) cells. It has been suggested that lipid rafts are involved in the apical sorting of membrane and secretory proteins. To investigate the involvement of lipid rafts in the apical sorting of wtEPO, we examined the effect of cholesterol depletion with methyl-beta-cyclodextrin on the secretion polarity of EPO and analyzed Triton X-100 insoluble cell extracts by sucrose density gradients centrifugation in MDCK cells. We found that wtEPO was shifted in non-polarized direction by cholesterol depletion. Most of the wtEPO was not detectable in the raft fractions by sucrose density gradients centrifugation analysis. These results indicate that apical secretion of EPO involves a cholesterol-dependent mechanism probably not involving lipid rafts.

Cholesterol is required for the reconstruction of the sodium- and chloride-coupled, gamma-aminobutyric acid transporter from rat brain
Shouffani, A. and B. I. Kanner (1990), J Biol Chem 265(11): 6002-8.
Abstract: The reconstruction of the purified sodium- and chloride-coupled gamma-aminobutyric acid transporter from rat brain into asolectin liposomes requires the addition of brain lipids (Radian, R., and Kanner, B. I. (1985) J. Biol. Chem. 260, 11859-11865). The reconstitution assay was used to identify the component(s) from brain lipids responsible for the stimulation during the fractionation of brain lipids. The distribution of the active component was found to be similar to that of cholesterol. Furthermore, cholesterol was found to mimic the effect of brain lipids and it stimulated the transport activity up to 20-fold. Optimal reconstituted transport activity was achieved with mixtures of cholesterol and any one of several phospholipids, such as phosphatidylcholine, phosphatidylserine or phosphatidylglycerol. gamma-Aminobutyric acid transport in these liposomes of defined composition exhibited all the properties of the native transporter, such as the absolute dependence on sodium and chloride and electrogenicity. Cholesterol could not be replaced by cholest-4-en-3one and other steroids, and thus its effect is probably not due to effects on membrane fluidity. The requirement was also not due to effects on intactness of the liposomes or incorporation of proteins into them. Furthermore it was found that the reconstitution of the sodium and potassium coupled L-glutamic acid transporter from rat brain also required cholesterol. However, in this case the optimal activity was reached by 4-5-fold lower levels of cholesterol than those necessary for gamma-aminobutyric acid transport. When cholesterol depletion from the transporters was incomplete, addition of exogenous brain lipids was not required. Thus, if the cholesterol was still associated with the transporter proteins, its final concentration, as a fraction of the total lipids present in the reconstitution mixture, was only about 0.01 mol%. Thus, it is likely that the effects of cholesterol are due to direct interactions with the cotransporters and not to an average effect on membrane properties.

Cholesterol is required for the secretion of the very-low-density lipoprotein: in vivo studies
Khan, B. V., T. V. Fungwe, et al. (1990), Biochim Biophys Acta 1044(3): 297-304.
Abstract: Rats were fed for 1 week with a standard chow diet, a diet supplemented with lovastatin (0.1%), or a diet supplemented with both lovastatin and cholesterol (0.1/0.1%), to study effects of depletion of a putative hepatic metabolic pool of cholesterol on secretion of the very-low-density lipoprotein (VLDL) in the intact animal. Triton WR-1339 (50 mg/100 g body wt.) or the 0.9% NaCl vehicle alone was given intravenously via a sacral vein. Treatment with lovastatin decreased the secretion of all plasma VLDL lipids, the average decrease after 2 h for VLDL triacylglycerol, phospholipid, cholesterol and cholesteryl ester being 45%. When both lovastatin and cholesterol were included in the diet, the secretion of VLDL triacylglycerol and phospholipid was similar to that of control animals, while secretion of VLDL cholesterol and cholesteryl ester was increased. Treatment with lovastatin reduced the hepatic concentration of cholesteryl esters 42% without affecting free cholesterol. In separate experiments, in vivo synthesis of cholesterol was determined 1 h after intraperitoneal administration of 3H2O. Incorporation into hepatic and plasma free cholesterol and cholesteryl esters was greater in the rats fed lovastatin than in control animals, concurrent with decreased VLDL secretion. The metabolism of VLDL was determined in vivo by intravenous administration of 125I-VLDL. The fractional clearance rates of 125I-VLDL from the plasma were similar among the three experimental groups. Synthesis of hepatic triacylglycerol from 1-14Coleate in vivo was similar in all treatment groups; incorporation into plasma triacylglycerol was reduced with lovastatin treatment and reversed partially by inclusion of 0.1% cholesterol in the lovastatin diet. Plasma concentrations of triacylglycerol followed patterns of incorporation of 1-14Coleate. Triacylglycerol concentration in the liver increased when cholesterol was included in the diet. In companion experiments, incorporation of 1-14Coleate into perfusate triacylglycerol in vitro was reduced with perfused livers from lovastatin-treated animals. In these experiments, oxidation of fatty acid into CO2 and perchloric acid-soluble counts was not affected by lovastatin, added either to the diet or to the perfusate in vitro. It appears, therefore, that lovastatin does not affect triacylglycerol synthesis or fatty acid oxidation, which per se might reduce formation and secretion of VLDL. These data, therefore, strengthen the hypothesis that reduced availability of cholesterol in a putative hepatic metabolic pool, required for secretion and transport of triacylglycerol in the VLDL, is a factor contributing to decreased secretion of the VLDL.

Cholesterol is required in the exit pathway of Semliki Forest virus
Marquardt, M. T., T. Phalen, et al. (1993), J Cell Biol 123(1): 57-65.
Abstract: The enveloped alphavirus Semliki Forest virus (SFV) infects cells via a membrane fusion reaction triggered by low pH. For fusion to occur cholesterol is required in the target membrane, as demonstrated both in in vitro fusion assays and in vivo for virus infection of a host cell. In this paper we examine the role of cholesterol in postfusion events in the SFV life cycle. Cholesterol-depleted insect cells were transfected with SFV RNA or infected at very high multiplicities to circumvent the fusion block caused by the absence of cholesterol. Under these conditions, the viral spike proteins were synthesized and transported to the site of p62 cleavage with normal kinetics. Surprisingly, the subsequent exit of virus particles was dramatically slowed compared to cholesterol-containing cells. The inhibition of virus production could be reversed by the addition of cholesterol to depleted cells. In contrast to results with SFV, no cholesterol requirement for virus exit was observed for the production of either the unrelated vesicular stomatitis virus or a cholesterol-independent SFV fusion mutant. Thus, cholesterol was only critical in the exit pathway of viruses that also require cholesterol for fusion. These results demonstrate a specific and unexpected lipid requirement in virus exit, and suggest that in addition to its role in fusion, cholesterol is involved in the assembly or budding of SFV.


First Page Previous Page Next Page Last Page



Sitemap
Link | Link | Link | Link | Link | Link | Link | Link

Search the Dr Huxt site:

powered by FreeFind



Last Modified: 29 January 2006
http://www.huxt.com